

RIPA-1 : FIRST INTERNATIONAL CONFERENCE ON RIPARIAN ECOSYSTEMS SCIENCE AND MANAGEMENT BRATISLAVA, 6-7 APRIL 2022

Ecotypic variation research to achieve functional targets in the conservation management of riparian forests

Inês Gomes Marques¹; Cristina Vieites-Blanco¹; Maria João Barrento²; Paula Scotti²; José Semedo²; Ana Paula Rodrigues¹; Teresa Soares David^{1, 2}, Alejandro Solla³ and Patricia María Rodríguez-González¹

¹ Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.

² National Institute of Agricultural and Veterinary Research (INIAV), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal.

³Faculty of Forestry, Institute for Dehesa Research (Indehesa), University of Extremadura, Avenida Virgen del Puerto 2, Plasencia, Spain.

State of the art

The knowledge of **intra- and inter-specific variation of functional traits** is essential to:

assess riparian forests diversity

predict its demographic distribution

establish functional targets for the conservation and management of riparian corridors.

Target species: *Alnus* spp.

Research on morphological and physiological differences between closely related *Alnus* species and populations can benefit decision making in conservation of riparian corridors and restoration efforts.

State of the art

Why Alnus spp?

- Key species for riparian corridors health
- Wide latitudinal distribution
- Survival at lower latitude limits can mimick future climatic conditions
- Recent species differentiation:
 Alnus glutinosa [L.] Gaertn.
 Alnus lusitanica (Vít, Douda & Mandák).

- Tetraploid (2n=4X)
- High allelic richness and gene diversity (Havrdová, 2015)
- Rounded or obtuse apex lamina
- Longer catkin stalk
- Longer female catkins

Alnus glutinosa

- Diploid (2n=2X)
- High morphological variation
- Dorsal leaf sides lamina are glabrous

Objectives

This study aimed to

(1) assess the phenotypic variation of target functional traits in *A. glutinosa* and *A. lusitanica*

(2) link plant growth performances to functional traits and species

To accomplish this, we

(1) measured a set of morphological, physiological and phenological functional traits from seedlings of

- 7 A. glutinosa populations
- 6 A. lusitanica populations

(2) modelled plant biomass from the functional traits

Methods

(1)

Seedlings were grown under common environmental conditions for 2 years, in a greenhouse in Oeiras, Portugal

(3)

Linear mixed models were fitted to the Total Dry Biomass data from the two-year-old plants as a proxy of growth performance with 'population' as a random nested factor in 'species' using the *lmer* function in *lme4* package.

1.00

16 traits were different between species:

- 10 morphological 4 biochemical
- 2 physiological

- Almost all the morphological variables related with root elongation were species-specific

- The *A. lusitanica* populations showed higher values than A. glutinosa for most morphological and biochemical functional traits.

Source of variance

Between Species Within Species

Model	Dependent variable	Indepedent variables	Estimates	Std Error	AICc	P-value
1	Total Dry Biomass	Intercept Chl b	1.39454 -3.21236	2.20659 2.88873	202.4901	<0.001***
		Total phenolic compounds	-1.60473	0.56853		
		LDMC	5.78292	5.96792		
		Root-shoot ratio	1.00731	0.33978		
		RL _{1.5-2}	0.06260	0.01108		
2		Intercept	1.37847	2.1158	204.4374	<0.001***
		Chl b	-4.34560	2.78545		
	Total Dry Biomass	Total phenolic compounds	-1.82303	0.55637		
		LDMC	6.28892	5.69844		
		Root-shoot ratio	0.07736	0.02974		
		Species (A. lusitanica)	0.89090	0.39252		
		RL _{1.5-2}	0.06101	0.01059		
3	Total Dry Biomass	Intercept	1.14324	2.19429	204.862	<0.001***
		Total phenolic compounds	-1.65382	0.57463		
		LDMC Root-shoot ratio	4.36271 0.89917	5.85360 0 33385		
		Species (A. lusitanica)	0.99953	0.37582		
		RL _{1.5-2}	0.06214	0.01112		
4	Total Dry Biomass	Intercept	1.76178	2.17002	205.9851	<0.001***
		Chl b	-4.10134	2.82951		
		Total phenolic compounds	-1.64822	0.56359		
		LDMC	5.58538	5.81352		
		Nnodules Root-shoot ratio	0.08817	0.03015 0 33230		
		RL _{1.5-2}	0.06391	0.01065		

The species factor was a significant contributor to growth performance in the best ranked models, with higher biomass accumulation associated to the *A. lusitanica* populations.

Conclusions

The A. lusitanica populations suggest the existence of

- adaptation of functional traits to drought conditions
- higher growth performance under optimal environmental conditions

The high ecotypic distinction between species and the observation of drought-adapted functional traits in *A. lusitanica* populations underlines the importance of conservation of this species at lower latitudes of distribution and paves the way for more research on trait-based approaches in management actions of restoration projects.

Next steps

Study **ecotypic variation** in functional traits of the populations at the southern limit of the genus distribution **at drier sites** can lead to a better understanding of their potential for demographic maintenance under future climatic conditions.

Study **genotypic variation in relation with functional traits** for conservation of adaptive traits

Thank you for listening!

icgmarques@isa.ulisboa.pt

Aknowledgements

Portuguese Foundation for Science and Technology funded this study through ALNUS project (PTDC/ASP-SIL/28593/2017); Inês Marques through a PhD scholarship (SFRH/BD/133162/2017), Patricia M. Rodríguez González through the CEEC Individual Programme (2020.03356.CEECIND) and Forest Research Centre through project UIDB/00239/2020.

We thank Roland Jansson, Tamara Corcobado, Yann Laurent, Ivan Bernez, Simon Dufour, Bohumil Mandák, Hassan Ennouni, Mohammed Sahli and Mohammed Ater for supplying the alder seeds of populations from Sweden, Austria, France and Morocco.

References

Gomes Marques, I., Faria, C., Conceição, S.I.R., Jansson, R., Corcobado, T., Milanovic, S., Laurent, Y., Bernez, I., Dufour, S., Mandák, B., Ennouni, H., Sahli, A., Ater, M., Dorado, F.J., Caperta, A.D., David, T.S., Solla, A. and Rodríguez-González, P.M. (2021), Germination and seed traits in common alder (*Alnus* spp.): The potential contribution of rear-edge populations to ecological restoration success. Restor Ecol. e13517. https://doi.org/10.1111/rec.13517

Mijnsbrugge, K. Vander, Turcsán, A., and Michiels, B. 2015. Population differentiation and phenotypic plasticity in temperature response of bud burst in Frangula alnus provenances of different latitude. Plant Syst. Evol. 302:257–264 Available at: https://link.springer.com/content/pdf/10.1007%2Fs00606-015-1258-2.pdf [Accessed August 22, 2019].

Santini, A, Ghelardini, L., Falusi, M., Bohnens, J., Buron, M., Collin, E., et al. 2004. Vegetative bud-burst variability of European elms. Invest Agrar Sist Recur. 13:37–45. Solla, A., Pérez-Sierra, A., Corcobado, T., Haque, M. M., Diez, J. J., and Jung, T. 2010. Phytophthora alni on alnus glutinosa reported for the first time in Spain. Plant Pathol. 59:798.

Vít, P., Douda, J., Krak, K., Havrdová, A., and Mandák, B. 2017. Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa – An analysis based on morphometry, karyology, flow cytometry and microsatellites. Taxon. 66:567–583.