Long-term development of riparian forest vegetation after bringing back more water dynamics to the floodplain

- success and limits of a restoration project along the Danube in Germany

Barbara Stammel – RIPA 1 - Bratislava - 6. April 2022

The project area

- River Danube
- Mean discharge: 300 m³/s
- Impounded since 1970
- Large (floodplain) forest

The restoration project – bringing back more dynamics

Implementation: 2006-2010 Water management authority Ingolstadt

Most important measures:

New flooplain stream: 1 – 5 m³/s Ecological floodings (EF): 25 m³/s

Projekt area:

1.200 ha Floodplain forestCa. 80 ha flooded during EFCa. 180 ha flooded during HQ₁₀

Plot design

EF: ecological flooding, GW: groundwater, HQ10: 10yearly natural flood

Hydrologic events ("ecological" und "natural" floods) 2008 - 2019

Results - Ellenberg Moisture Indicator Value

- Flooding categories show a clear gradient
- Timely changes only for permanently flooded plots

Results - Species number

- 2008 2012: Species
 number increased
 significantly for plots
 flooded by the stream
- Strong decline after the HQ10 in 2013 on all plots
- Further decline in the dry year 2019
- Target species and typical floodplain species behave very similar

Results - Species turn over (Sörensen Index)

Results – Species composition

NMDS

All plots of one flooding categories per year joined using frequency of species

Dynamic Floodplain forest? – Summary and conclusions

- First increase: Floodplain forest adapted to flooding, even after 40 years of disconnection
- Mainly changes on plots flooded by the river
- Key factor for species diversity: relief (moisture gradient) and hydrodynamics
- High species turnover is typical for floodplains
- Significant changes by natural flooding could help restoration
- Declining species number due to dry summers? Further monitoring needed!!!

Thank you for your attention!!!

Flooding

Results - Target species number

- Differences due to flooding categories
- 2008 2012: Species number increased

Target species Floodplain forest

5,0

,0

Flooded by

stream

by GW

- HQ 10 induced species decrease on white in the following years
- Für Zielarten sehr ähnlich, Feuchtezeige

KATHOLISCHE UNIVERSITÄT Eichstätt-Ingolstadt

by EF rarely

by HQ10

not flooded

by EF often

Methode: ursprüngliches Plot-Design 2008

