

NUMERICAL APPLICATION OF THE THRESHOLD CONDITIONS FOR VEGETATION REMOVAL DURING RECORD FLOOD IN THE MEUSE RIVER

Giulio Calvani^{1,2} Koen Berends² Jurjen de Jong² Costanza Carbonari¹ Luca Solari¹

¹ Department of Civil and Environmental Engineering, University of Florence, Italy ² Deltares, Delft, The Netherlands

07/04/2022, Bratislava

07/04/2022, Bratislava

Equation for vegetation dynamics

Threshold conditions for vegetation removal

$$V_c = \sqrt{\frac{\alpha_g t_g}{\alpha_d t_d} \frac{\phi_m}{Y}}$$

RIPA-1

 V_c = Threshold flow velocity [m / s]

 ϕ = vegetation density

 ϕ_m = Carrying capacity

 α_g = growth coefficient α_d = decay coefficient

 t_g = growth duration

 t_d = decay duration

EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 45, 723–735 (2020) © 2019 John Wiley & Sons, Ltd. Published online 20 January 2020 in Wiley Online Library (wilevonline/library.com) DOI: 10.1002/csp.4735 *Y* = water depth

Biomorphological scaling laws from convectively accelerated streams

Geophysical Research Letters[.]

Threshold Conditions for the Shift Between Vegetated and Barebed Rivers G. Calvani¹, C. Carbonari¹, and L. Solari¹

Ombrone River (Italy) before and after November 2016 flood

07/04/2022, Bratislava

RIPA-1

The Dutch Meuse River

Riparian vegetation along the Meuse River (Netherlands).

Courtesy of Hermjan Barneveld (@WUR)

07/04/2022, Bratislava

The flood event in the Meuse River – 17 July 2021

The flood event in the Meuse River – 17 July 2021

Numerical simulations with Delft3D

16 July 2021 before the flood event

The flood event in the Meuse River – 17 July 2021

Numerical simulations with Delft3D

07/04/2022, Bratislava

Maps of vegetation removal

Flow velocity-to-threshold ratio

Type of vegetation: willows

 V_c = 1.1 m/s (area around Weir Sambeek)

V_c is point-by-point variable (depends on Y)

Maps of vegetation removal

Flow velocity-to-threshold ratio (V_{max} / V_c) [%]

Comparison among different types of plants

Willows are more prone to be uprooted than poplars

Important for the design of river restoration projects

07/04/2022, Bratislava

Deltares

Conclusion and future perspectives

- Vegetation characteristics are averagely quantified
- Regions susceptible to plant removal are clearly identifiable
- Plant removal may increase river dynamics and wood transport processes
- Comparison to field measurements and observations

References

- Calvani, G., Perona, P., Schick, C., & Solari, L. (2020). Biomorphological scaling laws from convectively accelerated streams. *Earth Surface Processes and Landforms*, 45(3), 723-735.
- Calvani, G., Carbonari, C., & Solari, L. (2022). Threshold conditions for the shift between vegetated and barebed rivers. *Geophysical Research Letters*, 49, e2021GL096393.
- Edmaier, K., Burlando, P., & Perona, P. (2011). Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment. *Hydrology and Earth System Sciences*, 15(5), 1615-1627.

Giulio Calvani

<u>Giulio.Calvani@unifi.it</u>

Giulio.Calvani@deltares.nl