RIPA-1 : First International Conference on Riparian Ecosystems Science and Management

Funding

FCT

e a Tecnologia

Fundação para a Ciência **Coordinating institution**

Bayesian Networks and expert knowledge in riparian ecosystem management

Vieites-Blanco, C., Gomes Marques, I., Segurado, P., Jung, T., Almeida, H., Biurrun, I., Corcobado, T., Costa e Silva, F., Diez, J. J., Dufour, S., Faria, C., Ferreira, M.T., Ferreira, V., Jansson, R., Machado, H., Marçais, B., Moreira, C., Oliva, J., Pielech, R., Rodrigues, A., Soares David, T., Solla, A., Marques, M., Barrento, M.J., Fernandes, M.R., Cupertino, A., Rodríguez-González, P. M.

Bayesian Networks in riparian ecosystem management

What are Bayesian Networks (BN)?

INTRODUCTION

Probabilistic graphical models that determine the cause-effect relationships between variables (nodes); links between parent and child nodes are defined by a set of conditional probabilities

- Causal relationships between variables
- Unidirectional arrows (no loop back)
- Node states: categorical / discretized

CONDITIONAL PROBABILITY TABLES (CPTs)

Parent Nodes								
Prob	P (RF)	Tab	les	P (FC)				
Low	0.550	L	.ow	0.600				
High	0.450	H	ligh	0.400				
Child Node Conditional Probability Table								
RF	FC	P (WA	=Hig	h RF,FC)	P (WA=L			

INI	10	P (mA-mgnhxi,re)	P (MA-LOWIN , C)
High	High	0.950	0.050
High	Low	0.940	0.060
Low	High	0.290	0.710
Low	Low	0.001	0.999

and DE EC)

- Quantitative description of the relationships
- Avoid complex models that imply complex CPTs

Ames, D. P., Neilson, B. T., Stevens, D. K., & Lall, U. (2005). Using Bayesian networks to model watershed management decisions: an East Canyon Creek case study. *Journal of hydroinformatics*, 7(4), 267-282.

INTRODUCTION

Bayesian Networks in riparian ecosystem management

What can BN offer to research and management of riparian ecosystems?

Interdisciplinarity

- Integrate multiple system components
- Include different information sources

Deal with limited data

- Integrate different types of information (e.g. expert judgement, literature review, empirical data)
- Allow progressive improvement and continuous updating to include new advances in the state-of-the-art or new data

Communication to stakeholders

- Graphical output easily interpretable
- Modular architecture

Barton, D. N., Saloranta, T., Moe, S. J., Eggestad, H. O., & Kuikka, S. (2008). Bayesian belief networks as a meta-modelling tool in integrated river basin management—Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin. Ecological economics, 66(1), 91-104. Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling & Software, 37, 134-145.

INTRODUCTION

462

Bayesian Networks in riparian ecosystem management

Some examples....

Integrated Environmental Assessment and Management — Volume 8, Number 3—pp. 462–472 © 2011 SETAC

A Bayesian Network Model for Integrative River Rehabilitation Planning and Management

Mark E Borsuk, * †, ‡ Steffen Schweizer, †, § and Peter Reichert †, || †Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland ‡Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA §Kraftwerke Oberhasli AG, Meiringen, Switzerland ||ETH Zürich, Swiss Federal Institute of Technology, Zürich, Switzerland

•

**** ScienceDirect

ANALYSIS

Bayesian belief networks as a meta-modelling tool in integrated river basin management — Pros and cons in evaluating nutrient abatement decisions under uncertainty in a Norwegian river basin

available at www.sciencedirect.com

D.N. Barton^{a,*}, T. Saloranta^a, S.J. Moe^a, H.O. Eggestad^b, S. Kuikka^c

^aNorwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway ^bNorwegian Institute for Agricultural and Environmental Research (Bioforsk), Fr. A. Dahlsvei 20, NO-1432 Ås, Norway ^cFEM Group, University of Helsinki, Department of Biological and Environmental Sciences, P. O. Box 56, Fl-00014 University of Helsinki, Finland

INTRODUCTION

Participatory tools for expert knowledge

O.Nyumba, T., Wilson, K., Derrick, C. J., & Mukherjee, N. (2018). The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods in Ecology and evolution, 9(1), 20-32.

CASE STUDY

ADnet – predicting vulnerability to alder decline

Alder decline in Europe

The invasive pathogen Phytophthora xalni

- Oomycete; 90s in N Europe; now extended in C and S Europe
- Massive decline and mortality

Threat to alder riparian forests

- Emergent diseases add to previous threats by human activities and climatic alterations
- Threaten ecological functions (e.g. N₂ fixation, biodiversity maintenance)

Bjelke *et al.* 2016 Freshwater Biol 61(5): 565-579

CASE STUDY ADnet – predicting vulnerability to alder decline

What is the ADnet (ALNUS DECLINE net)?

- Predict the vulnerability of alder forests to P. xalni
- Field data, bibliography and expert knowledge
- Panel of experts (19 researchers, 12 institutions, 6 countries) in plant pathology, riparian ecology, ecophysiology

CASE STUDY

ADnet – predicting vulnerability to alder decline

ADnet – predicting vulnerability to alder decline

What were the main limitations encountered?

High complexity of the Conditional Probability Tables

- Division of the model in submodels
- Synthetic nodes

CASE STUDY

Limit the number of links to a child node to 3-4

Discretization of continuous variables

- Probabilistic nodes (discrete variables)
- Equation nodes (equation that describes the interaction of continuous variables)
- Deterministic nodes (probabilities 0 or 1)

Temporal and geographical scale

- Model scales must be defined to homogenize the temporal and spatial scales and the resolution of the nodes (specially challenging when integrating different data)
- Geographical filter node

Specific area of knowledge with few experts and available data

Focus groups

Terrestrial biomes	Country
Tundra	Western Sweden
Boreal Forests/Taiga	Eastern Sweden
Temperate Broadleaf & Mixed Forests	Central Europe (France, Germany, Austria, UK,
-	Northern Italy) and Northern Iberian Peninsula
Temperate Conifer Forests	Northern Italy
Mediterranean Forests, Woodlands & Scrub	Southern Portugal, Southern Spain, Central and
	Southern Italy
Temperate Grasslands, Savannas & Shrublands	Romania, Ukraine, Bulgaria

Average temperature of the coldest month (° C

CONCLUSIONS AND PROSPECTS

High potential of BN and FG to support riparian ecosystem management

- Deal with limited and heterogeneus data, interdiscipinarity
- Graphical output easily used by stakeholders for ecological risk assessment, management assessment, etc.

Case study - Alder Decline net (ADnet)

- Alder decline due to *P. xalni* need to prioritize areas for conservation to facilitate management
- Predict the vulnerability of alder forests to the pathogen, taking into account interacting abiotic, biotic and social factors
- Interdisciplinar and international panel of experts 2 consultation rounds

Leasons learned from the case study

- Limit ADnet complexity to facilitate CPTs completion
- Inclusion of equation nodes for continuous variables
- Focus groups to deal with very specific information and reduced availability of experts and data

Acknowledges

Thank you for your attention!

This study is funded by Portuguese Foundation for Science and Tecnology (FCT) through ALNUS project (PTDC/ASP-SIL/28593/2017). Inês Marques was funded by FCT with the grant SFRH/BD/133162/2017, Patricia M Rodríguez-González was supported by FCT through the CEEC Individual programme grant number 2020.03356.CEECIND, and CEF by UIDB/00239/2020.

Contact: cristinavieites@isa.ulisboa.pt

FUNDAÇÃO para a Ciência e a Tecnologia

