

CAUSAL EFFECTS OF HUMAN-INDUCED PRESSURES ON CHANGES AND STATUS OF RIPARIAN VEGETATION AN EVIDENCE-BASED REVIEW

Marta González del Tánago, Paula García Núñez & Diego García de Jalón

E.T.S. Ingeniería de Montes, Forestal y del Medio Natural Universidad Politécnica de Madrid, Spain

RIPA-1 : First International Conference on Riparian Ecosystems Science and Management 6 th to 7th April 2022 in Bratislava (Slovakia)

INTRODUCTION

- Riparian corridors frequently support **multiple pressures** which alter the taxonomic, landscape and functional characteristics of riparian vegetation
- A precise knowledge of causality between pressures and vegetation changes is needed to design proper management options
- The design of conceptual diagrams linking altered variables and vegetation status must be at the beginning of the understanding of the involved processbased relationships

AIMS OF THE WORK:

- Create **simplified diagrams** stating potential effects of pressures on vegetation attributes
- Explore scientific evidences of vegetation responses to pressures
- Identify gaps and limitations of the existing literature reporting ecoevidenced vegetation responses

METHODOLOGY

(type of pressure))

Searching for observed data, Results from models were excluded

METHODOLOGY

Number of peer-reviewed articles an type of article

(BA: Before-After; CI: Control-Impact; AI: After-Impact; BACI: BeforeAfter-ControlImpact; SG: Spatial gradient)

PRESSURE	Total reviewed articles	Selected articles for Eco-evidence	Type of article				
			BA	CI	AI	BACI	SG
FLOW REGULATION	304	88	36	28	7	10	7
AGRICULTURE	106	15	7	6	1	1	0
GRAZING	213	41	5	28	1	7	0
MINNING	52	7	2	3	0	1	1
URBANIZATION	181	20	6	6	1	0	13
TOTAL	856	177	56	71	10	19	21

METHODOLOGY

ALTERED VARIABLES

PRESSURE	VARIABLE	Nº art.	%
	High flows	38	43
	Low flows	25	28
FLOW	Average flows	24	27
REGULATION	Flood frequency	18	20
	Sediment supply	18	20
	Flood magnitude	13	13
	Timing	11	13
	Agricultural area	15	100
	Suspended solids	6	40
AGRICULIURE	Nutrients	5	33
	Channel narrowing	3	20
	Average flow	2	13
	Grazing land	41	100
GRAZING	Soil nutrients	4	10
	Soil moisture	2	5
	Urban land	26	100
URBANIZATION	Impervious área	8	31
	Soil moisture	2	8
	Mining area	6	86
MINING	Pollutants	2	29
	Channel incision	2	29

VEGETATION RESPONSES

HYPOTHESIZED CAUSE-EFFECT RELATIONSHIPS:

SIMPLIFIED CONCEPTUAL MODEL

CASCADE CAUSALITY

OVERARCHING QUESTION: What are the impacts of each pressure on riparian vegetation?

Insuficient understanding of the mechanisms inducing vegetation changes

FLOW REGULATION SCORED EVIDENCE

DIRECT EFFECTS:

Eco-evidence score:

>20 Supported Evidence< 20 No evidence</p>

FLOW REGULATION SCORED EVIDENCE

DIRECT EFFECTS:

Eco-evidence score:

>20 Supported Evidence< 20 No evidence</p>

AGRICULTURE SCORED EVIDENCE

DIRECT EFFECTS:

Eco-evidence score:

>20 Supported Evidence< 20 No evidence</p>

GRAZING SCORED EVIDENCE

DIRECT EFFECTS:

Eco-evidence score:

>20 Supported Evidence< 20 No evidence</p>

URBANIZATION SCORED EVIDENCE

DIRECT EFFECTS:

Eco-evidence score:

>20 Supported Evidence< 20 No evidence</p>

- MOST RESEARCH FOCUS ON REPORTING DIRECT EFFECTS of pressures on vegetation attributes, without evidencing the mechanisms or involved processes explaining these changes
- FLOW REGULATION is the best documented pressure, with high scores of causality
 - e.g. HIGH SUPPORT FOR HIGH-FLOWS DECREASE INDUCING:

"mitigation measures" are feasible (e.g. recruitment box)

 For the REST OF PRESSURES, INSUFFICIENT OR INCONSISTENT EVIDENCE of causal mechanisms is frequently found

• DIFICULTY IN CAUSAL CRITERIA COMPLIANCE:

- High diversity of approaches and results
- No significant number of studied sites with similar targets
- STRONG SITE-SPECIFICITY OF CAUSALITY:
 - Site-specific **external agents** influencing responses
 - Different multiple pressures acting simultaneously
- OBSERVED SIMILAR RESPONSES FROM DIFFERENT PRESSURES AND ALTERED VARIABLES:
 - Uncertainty of causal agents and potential mitigation measures
- Our Eco-evidence results provide an **objective causality framework** but highlights **NEEDS OF RESEARH** reporting **INVOLVED PROCESSES**, to which **MANAGEMENT ACTIONS SHOULD BE ADRESSED**

CAUSAL EFFECTS OF HUMAN-INDUCED PRESSURES ON CHANGES AND STATUS OF RIPARIAN VEGETATION AN EVIDENCE-BASED REVIEW

Marta González del Tánago, Paula García Núñez & Diego García de Jalón

E.T.S. Ingeniería de Montes, Forestal y del Medio Natural Universidad Politécnica de Madrid, Spain

THANK YOU FOR YOUR ATTENTION i

RIPA-1 : First International Conference on Riparian Ecosystems Science and Management 6 th to 7th April 2022 in Bratislava (Slovakia)