

Indicators of vegetation responses to global changes: A multi-scale approach

Marta González del Tánago Universidad Politécnica de Madrid, Spain

Funded by the Horizon 2020 Framework Programme of the European Union

- 1. <u>Summarize</u> the multi-scale framework for characterization and assessment of Riparian Vegetation
- 2. <u>Integrate</u> the different approaches presented by you in this Seminar, to validate the proposed framework
- 3. <u>Advance</u> towards next steps within CONVERGES Cost, feeding WG2 and WG3 with WG1 final remarks

- Recognization of the <u>Water Framework Directive</u> (WFD) as an important <u>driver</u> of river hydromorphology development
- Detection of the <u>small relevance of Riparian Vegetation</u> within the WFD, which emerged before clear scientific evidences of its key role in river hidromorphology
- A <u>wide dispersion of methodologies</u> and approaches to characterize and assess Riparian Vegetation (frequent mis-understanding between them)
- Need for <u>new approaches</u> to monitor and assess Riparian Vegetation within the WFD, to support <u>understanding of responses</u> to global changes

- Proposal of multi-scale process-based indicators of Riparian Vegetation to characterize current status
- Develop understanding of vegetation responses to multiple disturbances (natural and human-induced changes)
- Guidelines to characterize and assess Riparian Vegetation
- Attempt to integrate other methodological approaches within the proposed multi-scale framework
- Further steps towards WG2 and WG3

TYPES OF RIPARIAN VEGETATION INDICATORS

PLANTS:

- Species
- Size, Age
- Location

VEGETATION PATCHES:

- Composition
- Diversity
- Spatial structure
- Age classes
- Functional traits

RIPARIAN CORRIDORS:

- Dominant formations
- Width, Height
- Continuity
- Patch structure
- Functional zones
- Landscape complexity

J

MULTI-SCALE APPROACH

(Gurnell et al., 2016, REFORM Proyect)

Catchment

Water divide

Landscape unit Topography Geology Land cover

River segment Between confluences

River reach

Assemblage of geomorphic units

Section of river along which boundary conditions are sufficiently uniform that the river maintains a near consistent internal set of process-form interactions.

MULTI-SCALE VEGETATION UNITS/INDICATORS

ANALYSIS APPROACH (MAIN DATA SOURCE)	PLANT / PATCHES RIVER REACH (0,1-1 km)	RIPARIAN CORRIDOR RIVER SEGMENT (1-10 km)	CORRIDOR / FOREST TYPES LANDSCAPE UNIT / CATCHMENT (10-100 km)
Taxonomy based (field work)	Species composition, Abundance, Diversity	Plant formations, Plant communities	Phytosociological classes, Habitat types, Dominant species
Landscape-mosaic approach (GIS analysis)	Size, shape, coverage, Relative location to channel, Spatial distribution	Riparian corridor width, coverage, Connectivity, Fragmentation,	Corridor types, Spatial assemblage of patches, Landscape diversity
Functional approach (process-based) (field work + GIS analysis)	Pioneer Recruitment areas, Plant functional traits, Genetic diversity	Functional zones based on dominant fluvial processes, Vegetation guilds,	Broad Longitudinal /Transversal zonation of Plant communities, Broad location of Pioneer / Late- seral species

Reach features

Segment features

Catchment features

MULTI-SCALE VEGETATION UNITS/INDICATORS

Individual, Geomorphic unit, River reach, River segment, River network

PROCESS-BASED FRAMEWORK

SPATIAL SCALE	HYDROMORPHOLOGICAL PROCESS / VARIABLES	VEGETATION INDICATORS	DISTURBANCES / PRESSURES			
CATCHMENT LANDSCAPE UNIT	Precipitation, Evapotranspiration, Topography/Landforms Land Cover, Land Uses Hillslope Runoff, Aquifer storage Erosion processes, Sediment supply	Phytosociological classes, Habitat types, Dominant species Longitudinal /Transversal zonation of Plant formations	Global (climatic) changes, Warming, Land Cover changes, Wildfires, Road construction, Irrigation, Overgrazing			
RIVER SEGMENT	Valley settings interactions Flow regime, Sediment budget Channel size and planform Channel adjustments Sediment size, Alluvial depth Floodplain sediment erosion /deposition Water table fluctuation,	Plant communities, Corridor width, coverage, Connectivity, Functional zones based on dominant fluvial processes. Patch structure, Landscape complexity	Flow regulation, Water abstraction Channelization, Dredging, Gravel mining, Floodplain occupation Groundwater depletion			
RIVER REACH	Flood frequency and duration, Shear stress, Riparian soil texture, Soil moisture Burial and scour processes	Species composition, Diversity Size, Location to channel, Recruitment areas, Plant functional traits, Genetic diversity	Embankments, Dredging, Channel revetments, Weirs, check-dams, Floodplain sealing, Debris filling, Plantations			

• Proposal of **multi-scale process-based indicators** of Riparian Vegetation to **characterize current status**

• Identify spatial scales:

- 1°. Recognize landscape units within the catchment (topography, land cover assemblages, geological features ...)
 2°. Delineate "river segments" along the main channel (valley features, significative tributary confluences ...)
 3°. Identify distinct "river reaches" within the river segments (assemblage of geomorphic units ...)
- Measure and quantify indicators of Riparian Vegetation at the respective spatial scales (plants, vegetation patches, riparian corridor ...)

- Proposal of multi-scale process-based indicators of Riparian Vegetation to characterize current status
- **Develop understanding** of vegetation responses to multiple disturbances (natural and human-induced changes)

TYPE OF DISTURBANCES AND VEGETATION RESPONSES

(From Garófano Gómez, 2019)

DISTURBANCES

Hydrological alteration (Flood magnitude and frequency, Sediment supply)

Morphological alteration (Channelization, Disconnectivity, Revetments, **REPORTED VEGETATION CHANGES**

Changes in types of vegetation, Recruitment, Aging, Simplification, Homogenization Encroachment, Terrestrialization

Regeneration, Genetic Exchange, Increase of species more prone to vegetative reproduction

Pollution (*Water pollutants, Nutrients*)

Encroachment by nutrient releases from dams

Change in Species composition, structure

Land Cover/Use changes

Climatic change (*Hydrologic decline*) Reduction of riparian vegetated area

Change in riparian corridors dimensions Change in fluvial landscapes

TYPE OF DISTURBANCES AND VEGETATION RESPONSES

Type of disturbances:

- Floods, Drought
- Dams, Reservoirs, Channelization
- Land cover changes
- Hydrologic decline

Type of responses:

- Removal, Recruitment
- Invasive species
- Encroachment,
- Aging, Mortality
- Terrestrialization
- Homogenization

POTENTIAL THRESHOLDS CHANGING TRAJECTORIES

RESPONSE TO PRESSURES VS. NATURAL ADJUSTMENT TO GLOBAL CHANGES

- > In general, **multiple disturbances** witth **cumulative effects** in time and space
- Converging trajectories of riparian vegetation over time, as "response" or "natural adjustment" (*García de Jalón et al., 2020*)

Hydrologic relaxation

RESPONSE TO PRESSURES VS. NATURAL ADJUSTMENT TO GLOBAL CHANGES

River Curueño (North west Spain)

1956

Free-flowing river Renaturalization at catchment scale

RESPONSE TO PRESSURES VS. NATURAL ADJUSTMENT TO GLOBAL CHANGES

River Arlanza (North central Spain)

Free-flowing river

Extensive farming and Grazing decrease

RESPONSE TO PRESSURES VS. NATURAL ADJUSTMENT TO GLOBAL CHANGES

River Guadiana Menor (South East Spain):

Dammed from 1984, Valley agriculture

RESPONSE TO PRESSURES VS. NATURAL ADJUSTMENT TO GLOBAL CHANGES

- > In general, **multiple disturbances** witth **cumulative effects** in time and space
- Converging trajectories of riparian vegetation over time, as "response" or "natural adjustment"
- Importance of enlarging the temporal scales for understanding vegetation responses
- Vegetation dynamism: Need to specify "time since the last disturbance"
- Uncertainty in linking vegetation status with intensity of pressures
- Lack of replicates with similar hymo-context but distinct intensity of disturbances

- Proposal of multi-scale process-based indicators of Riparian Vegetation to characterize current status
- **Develop understanding** of vegetation responses to multiple disturbances (natural and human-induced changes)
 - 1°. Measure changes of riparian vegetation indicators over time
 - 2°. <u>Document disturbances at multi-scales</u>

3°. Establish <u>functional</u>, <u>process-based links</u> between altered physical processes, hydromorphological variables and riparian vegetation indicators

- Proposal of multi-scale process-based indicators of Riparian Vegetation to characterize current status
- Develop understanding of vegetation responses to multiple disturbances (natural and human-induced changes)
- Guidelines to characterize and assess riparian vegetion

A) CHARACTERIZATION AND DIAGNOSIS:

- 1°. Characterize <u>current</u>, <u>past and historical conditions</u> at multiple scales
- 2°. Compare and measure occurred changes over time
- 3°. <u>Document disturbances</u> over time at multiple scales
- 4°. Identify changes in riparian vegetation units
- 5°. Establish process-based links with reported disturbances

6°. Understand <u>river trajectories from the past</u> and predict river trajectories <u>towards the future</u> under manament options

B) ASSESSMENT:

- 1°. Define "natural (non-human induced) or target conditions" as "reference"
- 2°. Quantify deviations from reference conditions
- 3° Establish thresholds for asigning "quality status"
- 4°. Identify indicators/indices of "**functionality**" and indicators/indices of "**artificiality**" of forms and processes, to explain thresholds between quality status

- Proposal of multi-scale process-based indicators of Riparian Vegetation to characterize current status
- Develop understanding of vegetation responses to multiple disturbances (natural and human-induced changes)
- Guidelines to characterize and assess riparian vegetion
- Attempt to **integrate** other **methodological approaches** within the proposed multi-scale framework

INTEGRATING APPROACHES WITHIN THE MULTI-SCALE FRAMEWORK

PARTICIPANT	INDICATORS	SPATIAL SCALE	DISTURBANCES	VEGETATION RESPONSES
W. Bertoldi				
P. Rodríguez				
D. García de Jalón				
E. Politti				
V. Martínez				
M. Liro				
A. Kidova				
T. Okruszko				
T. Kiss				
R. Egozi				
E. Abraham				
P. Zinke				
E. Papastergiadou				
J. Jakubinski				
R. Martínez				

- Proposal of multi-scale process-based indicators of Riparian Vegetation to characterize current status
- Develop understanding of vegetation responses to multiple disturbances (natural and human-induced changes)
- Guidelines to characterize and assess riparian vegetion
- Attempt to integrate riparian vegetation methodological approaches
- Further steps towards WG2 and WG3

Where we are:

- **Dispersion of methodologies** to characterize riparian vegetation
- Frequent **mis-understanding** of Characterization vs. Assessment
- Proposal of **Multi-scale process-based approach** for riparian vegetation characterization
- Lack of data to define "natural (non-human induced) or reference conditions of riparian vegetation, according to river hydromorphological typologies and biogeographic regions

What we propose next:

- Integrate methodologies and **document case studies** across European rivers
- Interdisciplinary groups (expertise on fluvial morphology and botany) to **draft** "natural" conditions of riparian corridors according to river typologies

CONCLUSIONS

- The Water Framework Directive should be **up-dated** in its hydromorphological background, assuming the interest of **including riparian vegetation** as a key hydromorphological element
- 2. A **multi-scale process-based** approach for riparian vegetation assessment could **integrate** existing riparian vegetation protocols, and **facilitate understanding** of riparian vegetation responses to disturbances
- 3. Converging trajectories of river corridos are observed in multiple rivers, which difficult the assessing of effects of natural disturbances and human-induced changes
- 4. Interest of collecting data from **case-studies across European rivers**, to **prove** the proposed multi-scale approach, and **document potential references** from the less human-altered rivers

THANK YOU FOR YOUR ATTENTION i