

RIPARIAN VEGETATION RESPONSES TO HYDROMORPHOLOGICAL ALTERATIONS IN MEDITERRANEAN SYSTEMS: Examples from Greek National River Monitoring Network

[WFD 2000/60/EE]

Eva Papastergiadou

& Patras Freshwater Team,

Dept. of Biology, University of Patras, Greece

ΥΠΟΥΡΓΕΙΟ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΝΕΡΓΕΙΑΣ & ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ

Arkoudorema stream, Mt Rhodope

2015. 7.30 13:34

2015. 7.29. 13:48

Nestos River, Stavroupoli Bridge, Stena

Axios Transboundary River

Acheron River Gorge's

Kallipefki stream, Mt Olympus

2015. 8.30 17:50

National River Monitoring Network

Code 91E0* 91F0	Riparian Forest Habitat types in Greece /NATURA 2000 sites Residual alluvial forests Alnus glutinosa & Fraxinus excelsior Mixed oak-elm-ash (Quercus robur, Ulmus laevis, U. minor, Fraxinus excelsior, F. angustifolia) forests of	3.1.1	Broad- leaved forests
0240	great rivers		
92A0	Distance orientalie 9 Liquidambar		
92C0	orientalis woods		
92D0	Thermo-Mediterranean riparian galleries (Nerio-Tamaricetea & Securinegion tinctoriae)		

Riparian Vegetation responses to specific hydromorphological pressures in Mediterranean rivers

Fluvial geomorphological processes are known to significantly influence the **structure** & the extent of the *riparian vegetation*

Alterations in *flow regime* & the *hydromorphology* are often responsible for

-changes in the *riparian plant community,*

-narrowing of the **riparian buffer zone** &

-loss of longitudinal connectivity.

Riparian Vegetation responses to specific hydromorphological pressures in Mediterranean rivers

Hydromorphological features & *modifications* were assessed in a network of more than

100 river reaches distributed among **14** WFD River Basin Districts (**RBDs**) in Greece [*National River Monitoring Programme*], to identify the **main drivers** of hydromorphological perturbation.

We employed the **River Habitat Survey (RHS)** & we recorded hydromorphological features & modifications in both *banks* & the *channel bed* along **500 m** for each river reach.

River Reach Scale: Hydromorphological pressures -Habitat Modification Score (HMS)

& the individual sub-scores that indicate *the extent of specific modifications*

e.g. bridges, fords, weirs, bank reprofiling, bank reinforcement etc. were calculated in order

- a) to assess the severity of the total *artificial modification* &
- b) to highlight the most common & severe causes of *longitudinal* & *cross-sectional* alterations.

River Reach Scale: PCA factor map of the HMS sub-scores

Squared loadings

Arrows represent the squared loadings of the variables.

Color intensity is proportional to the value of the loading.

Variables that are closer to the correlation circle contribute more to the *Principal Components*.

RI: Bank Reinforcement,RS: Banks & Bed Re-sectioning,RA: Banks & Bed Realignment

River Reach Scale:

Contribution of variables to Dim-1 HMS sub-scores to Dim 1, Dim 2 of PCA

Bank & Bed Re-sectioning, channel
Realignment (common *flood protection measures*) contributed the most to Component
1. [Longitudinal Changes]

Bridges, Fords had the largest contribution to Component **2**. [Cross-Sectional Changes]

River Reach Scale: PCA Biplot - HMS sub-scores

These observations imply that **Bank & Bed** Re-sectioning, **Realignment** are closely related with the *severe modifications*, while at *moderately impaired river* reaches **Bridges** appear to be the dominant cause for *hydromorphological alteration*.

Urban Fabric Road Non irrigated arable land

Permanently irrigated land

Fruit trees

Olive groves

Broad-leaved forest

Coniferous forest

Sclerophylous vegetation

Regional transformations & Land Use changes

Beaches, dunes and sand plains
Sparsely vegetated areas
Inland marshes
Salt marshes
Water courses
Water bodies
Coastal lagoons

-Significant parts of <u>Riparian forests</u> & <u>wetlands</u> transformed into cultivated areas.
-Hydromorphological alterations e.g.
embankments & stabilisation of the river
banks resulted in the delivery of significant
areas to Agriculture & Artificial surfaces .

Source: *Kostara et al.* **2019, 2020**

River Catchment Scale: Nestos River lower courses - estuaries

Bank Re-sectioning is usually associated with **channel realignment** & is used for producing *more uniform channel forms* that facilitate *flood flows*.

Thus, **bank** & **channel Re-sectioning** involves modifications that are part of <u>flood defense</u> <u>management practices</u> that usually protect neighboring **agricultures** from **flood** events.

Source: Chroni et al. 2019, 2020 (submitted)

River Catchment Scale: Nestos River lower courses

Source: Chroni et al. 2019, 2020 (submitted)

River Catchment Scale: Nestos River

Stabilisation of the **river banks** & **embankments** have resulted in the delivery of significant areas to **agriculture**.

Significant parts of the extended ancient <u>*Riparian forest</u> of Nestos* & <u>wetland areas</u> were transformed to the less natural land covers.</u>

LANDCOVER CODE	Class	LCLU	NATURA 2000 Code	N. C. %
Forests & semi- natural areas (FOR)	3.1.1	Broad-leaved forest	91F0, 92A0, 91M0, 92D0 και 91E0	-53.75
	3.2.1	Natural grassland	62A0, 6290 και 6420	-15.54
	2.3.1	Pastures	62A0, 6290 και 6420	-57.59
	3.2.3	Sclerophylous vegetation	5350	-38.28
	3.2.4	Transitional woodland shrub (Reforestation)		24.63
	3.3.1	Beaches, dunes & sand plains	1210, 2110, 2120, 2190 και 2220	-35.81

Source: Chroni et al. 2019, 2020 (submitted)

River Catchment Scale: Case Study Nestos River

Agricultural areas

- significant increase of the total area of *agricultural land* [rice, cropland, cotton, corn, etc.]

- **2.1.1** Non irrigated arable land
- 2.1.2 Permanently irrigated land
- 2.1.3 Rice fields
- 2.3.1 Pastures
- 2.4.2 Complex Cultivations
- 2.4.3 Abandoned agricultures

Multiple facets of riparian plant diversity in Mediterranean rivers

Objectives/Questions: What *drives riparian diversity* in river corridors?

- Patterns of species richness (a-diversity) along environmental gradients
- Environmental filters or geographic factors shape communities (*examine b-diversity patterns*)
- *Riparian plants & aquatic vegetation* were assessed in the same river network of more than 100 river reaches
- Community composition & cover abundance were recorded along
 100 m in both banks & channel
- Environmental variables were measured (water chemistry) & calculated (HMS & Channel alteration)

Multiple facets of riparian plant diversity in Mediterranean rivers

- a- diversity were assessed for each reach (Species Richness & Shannon-Wiener H) [R -packages "vegan" & "FD"]
- Functional diversity indices were calculated: Functional richness (Fric), Functional evenness (Feve), Functional divergence (Fdiv), Functional dispersion (Fdis) Rao's quadratic entropy (RaoQ) [R- function dbFD]
- **Taxonomic diversity** *Delta* were calculated accounting for **5** taxonomic levels [functions *taxondive* & *taxon2dist*]
- Relationships between *diversity indices* & *environmental variables* were examined [Fit Generalized Additive Models, package "mgcv" R)
- Focus on patterns of diversity along gradients of hydromorphologic change

Source: Stefanidis et al. 2020 in preparation

Functional & species richness were lower in "*Heavily modified*" reaches (*but not significant difference*)

Taxonomic diversity significantly *higher* in reaches with *low channel alteration*

Source: *Stefanidis et al.* 2020 in preparation

richness

log(hms)

Next steps:

 Examine b-diversity patterns along environmental and spatial patterns

 Investigate for patterns for separate plant groups (e.g. hydrophytes, helophytes, woody riparian vegetation etc.)

 Combine community data with spatial data on pressures (e.g. land uses in riparian buffers)

Thank you for your attention

Thank you for your attention

GIS spatial geo-database- CORINE land cover Classification System

Level 1	Level 2	Level 3	Abbrev.		
	1.1 Urban	1.1.1 Urban Fabric	AUU	Artificial	
1. Artificial surfaces	1.2 Industrial, commercial and transport units	1.2.2 Road and rail networks & associated land	AIR	surfaces	
		2.1.1 Non irrigated arable land	AAN	Cultivations	
	2.1 Arable land	2.1.2 Permanently irrigated land	AAP		
2. Agricultural		2.2.2 Fruit trees	APF		
areas	2.2 Permanent crops	2.2.3 Olive groves	APO		
	2.4 Heterogeneous agricultural areas	2.4.4 Agro forestry areas	AHF		
	3.1 Forests	3.1.1 Broad-leaved forest	FFB	Natural Land	
		3.1.2 Coniferous forest	FFC		
	3.2 Shrub /	3.2.1 Natural grassland	FSN		
3. Forests & semi natural areas	herbaceous vegetation associations	3.2.3 Sclerophylous vegetation	FSS		
	3.3 Open spaces with	3.3.1 Beaches, dunes & sand plains	FOB	Bare Land	
	little or no vegetation	3.3.3 Sparsely vegetated areas	FOS		
	4.1 Inland wetlands	4.1.1 Inland marshes	WIM	Wetlands	
4. Wetlands	4.2 Coastal wetlands	4.2.1 Salt marshes	WCM		
5. Water bodies		5.1.1 Water courses	WIC		
	5.1 Inland waters	5.1.2 Water bodies	WIB	Water	
	5.2 Marine waters	5.2.1 Coastal lagoons	WME		

