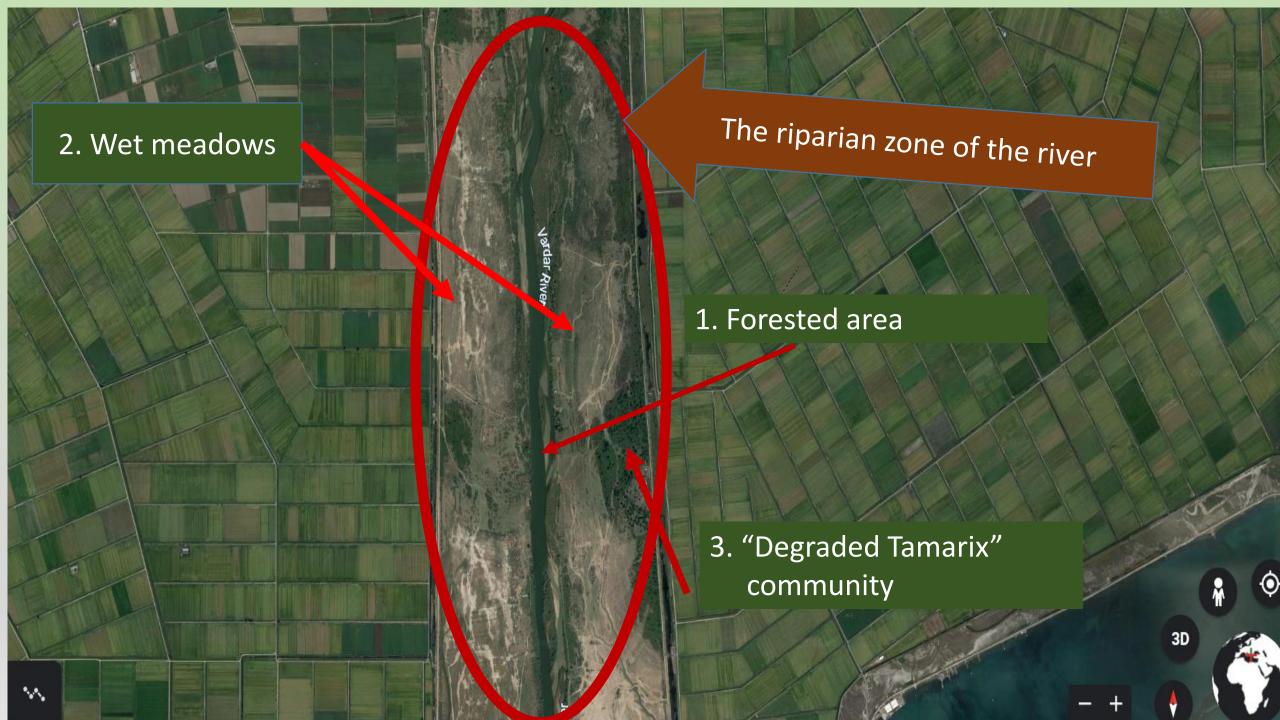


Yearly changes in herbaceous vegetation composition in relation to grazing intensity in Riparian ecosystem of Axios river.

Pinelopi Papaporfyriou, Eleni Abraham

Lab of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Greece

RIPARIAN VEGETATION RESPONSES TO GLOBAL CHANGES WG 1 Workshop, Madrid (Spain), January 29-30, 2020



The wetland in numbers

A large wetland has been created by the rivers with great ecological values that is now protected by international conventions.

- 295 species of birds, (66% of the species observed in Greece today), of which 106 nest
- 350 species and subspecies of plants
- 40 species of mammals
- 18 species of reptiles
- 9 species of amphibians
- 7 species of invertebrates
- 25 habitats

The main tree species in the area:

Salix sp.
Alnus glutinosa
Populus nigra
Fraxinus sp
Platanus orientalis

Source: Thermaikos Gulf Protected Areas Management Authority

Vegetation types (Natura 2000)

It is covered by three vegetation types of European Community Interest (Council Directive 92/43/EEC):

- i) 1420 Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi)
- ii) 92D0 Southern riparian galleries and thickets (*Nerio-Tamaricetea and Securinegion tinctoriae*)
- iii) 1310 Salicornia and other annuals colonising mud and sand

Wet meadows are covered by characteristic plant communities composed of species adapted to periodically flooded soils along the river flood.

Despite their limited extent, they constitute valuable habitats for the wild flora and fauna and important resource for extensive animal husbandry

- The main drivers that shape the plant communities composition and structure in these ecosystems are flooding and grazing.
- Both factors are unpredictable and temporality variable.
- Generate local environmental conditions leading to small scale heterogeneity.

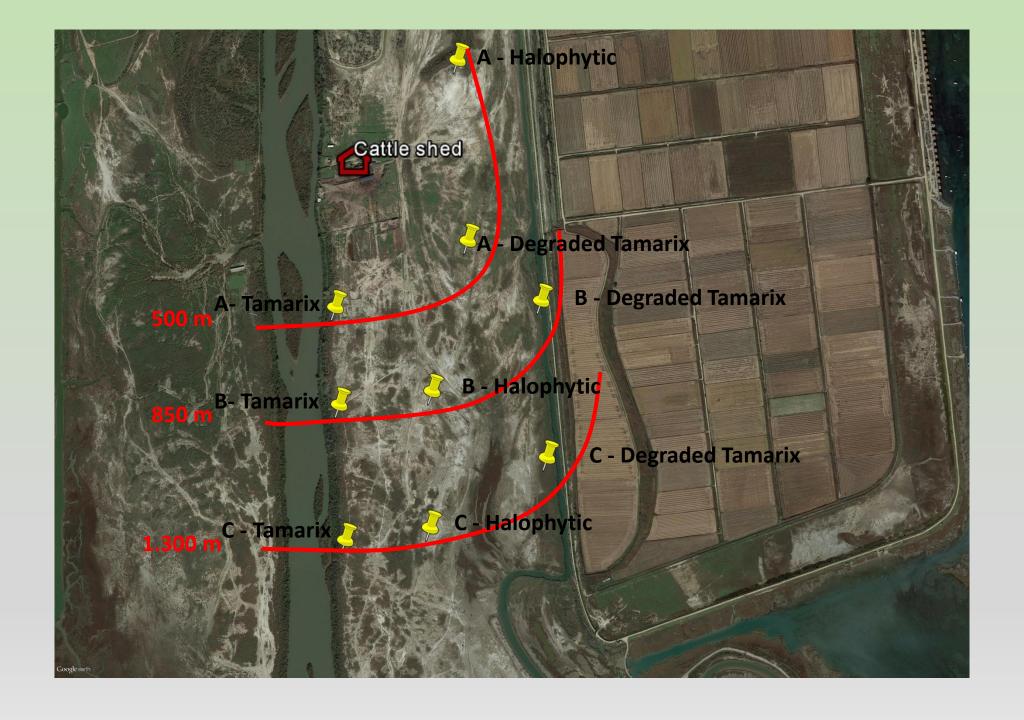
Flooding	Grazing
Affect the available light for plants	Affect plants through defoliation and trampling
Modifies nutrient availability	Change plant-to-plant interactions
Inhibits oxygen diffusion	Modifies nutrient by feces and urine
Affect water availability	

Water availability is highly depended on management (grazing) and climatic variability

- The grazing of free-ranging cattle is a traditional management practice suitable for wet meadows for several reasons
 - constant supply of freshwater,
- high forage productivity even during the dry summer periods
 - flat terrains

The area is grazed mainly by cattle and few semi-wild horses – About 400 cattle free grazed in the area

•Overgrazing is mentioned as a potential threat for the majority of Greek wetlands sites, indicating the need of constant monitoring of their conservation status could be achieved by a variety of measurements (Papaporfyriou *et al.*, 2014).

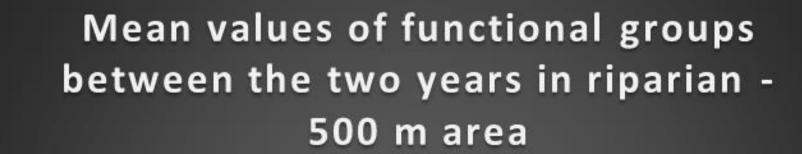


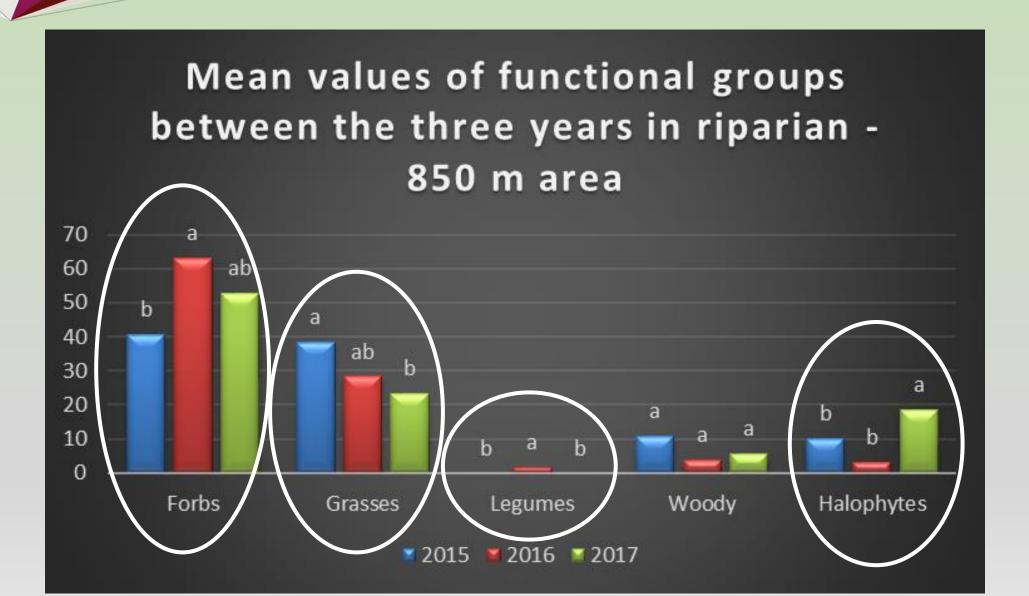
- 3 areas were selected in a distance of 500 m, 850 m and 1.300 m away from the cattle shed;
 - i) Riparian 500 m,
 - ii) Riparian 850 m and
 - iii) Riparian 1,300 m
- Measurements of cover and vegetation composition were performed in three plots, eight transects per plot (area 1.050 m² each one) by the line point method (Cook and Stubbendieck, 1986) in 2015, 2016 and 2017 (May-June), except for the Riparian - 500 m (only in 2016 and 2017) which was fenced
- Eight transects of 25 meters long were placed vertically along a measure tape of 50 m, every 6 meters, starting from 0 m to 42 m.

A/A	Family	Plant species
1	Tamaricaceae	Tamarix sp.
2	Rosaceae	Rubus sp.
3	Chenopodiaceae	Sarcocornia perennis
4		Halocnemun strobilaceum
5		Suaeda maritima
6		Suaeda splendens
7		Salsola soda
8		Salsola kali ssp. kali
9		Halimione portulacoides
10		Chenopodium sp.

11	Ranunculaceae	Ranunculus muricatus
12		Ranunculus sardous
13	Caryophylaceae	Spergularia salina
14	Gentianaceae	Centaurium pulchellum
15	Primulaceae	Anagallis arvensis
16	Brassicaceae / Cruciferae	Lepidium sp.
17	Apiaceae / Umbelliferae	Bupleurum sp.
18		Torilis sp.
19		Eryngium campestre
20		Daucus sp.
21	Plantaginaceae	Plantago coronopus
22		Plantago lanceolata
23		Plantago major
24	Boraginaceae	Heliotropium sp.
25	Plumbaginaceae	Limonium sp.
26	Malvaceae	Malva nicaeensis
27	Asclepiadaceae	Cynanchum acutum
28	Polygonaceae	Polygonum sp.
29	Juncaceae	Juncus acutus
30	Euphorbiaceae	Euphorbia helioscopia

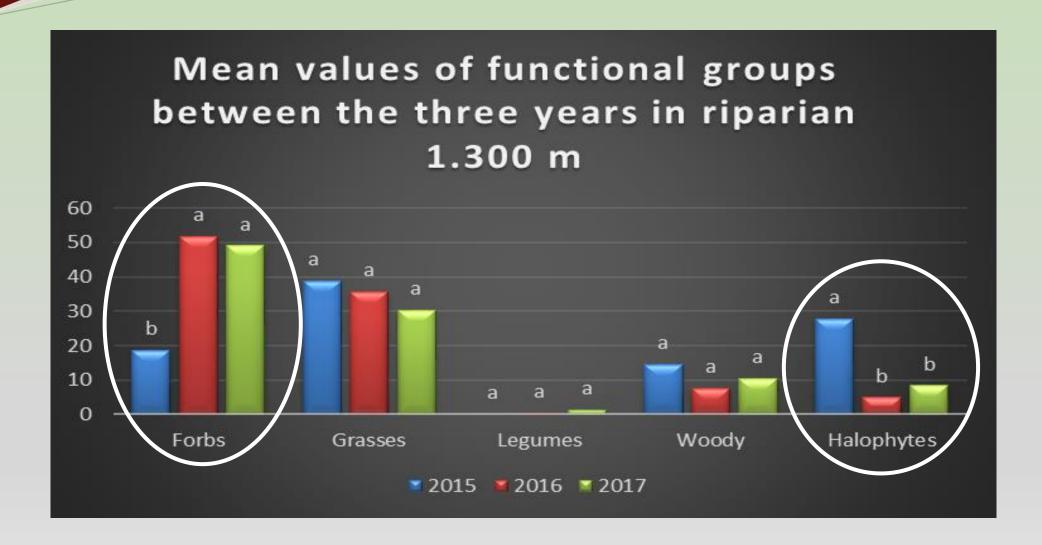
31	Poaceae / Gramineae	Lolium perenne
32		Cynodon dactylon
33		Aeluropus littoralis
34		Hordeum marinum
35		Hordeum murinum
36		Bromus hordeaceus
37		Bromus squarrosus
38		Puccinellia festuciformis
39		Setaria sp.
40		Parapholis incurva
41		Avena sp.
42		Poa sp.
43		Dasypyrum villosum
44		Taeniatherum caput-medusae
45		Polypogon monspeliensis
46	Fabaceae / Leguminosae	Trifolium repens ssp. repens
47		Trifolium physoides
48		Melilotus indicus
49		Medicago arabica
50		Medicago minima
51	Compositae / Asteraceae	Anthemis sp.
52		Chamomila sp.
53		Crepis setosa
54		Carlina lanata
55		Cirsium cf vulgare
56		Xanthium spinosum
57		Bellis sp.
58		Cardus pycnocephalus
59		Silybum marianum
60		Sonchus sp.
61		Cynara sp.





The dominant species in each functional group in riparian -500 m area

Years	Forbs	Grasses	Legumes	Woody	Halophytes
2016	Plantago coronopus	Cynodon dactylon	Trifolium sp.		Chenopodium polyspermum
	Anthemis cotula	Lolium rigidum ssp. rigidum	Medicago arabica	Tamarix hampeana	Suaeda splendens
	Spergularia marina	Aeluropus littoralis	Trifolium repens		Suaeda maritima
2017	Plantago coronopus	Cynodon dactylon		Tamarix hampeana	Chenopodium polyspermum
	Spergularia marina	Dasypyrum villosum	Trifolium physodes		Suaeda maritima
	Anthemis cotula	Juncus acutus			Chenopodium bonus-henricus



The dominant species in each functional group in riparian -850 m area

Years	Forbs	Grasses	Legumes	Woody	Halophytes
2015	Anthemis cotula	Hordeum marinum		Tamarix hampeana	Suaeda maritima
	Plantago coronopus	Lolium rigidum ssp. rigidum	0		Suaeda splendens
	Lepidium graminifolium	Cynodon dactylon			Chenopodium polyspermum
2016	Anthemis cotula	Hordeum marinum		Tamarix hampeana	Chenopodium bonus-henricus
	Lepidium graminifolium	Lolium rigidum ssp. rigidum	Medicago arabica		Chenopodium polyspermum
	Carduus pycnocephalus ssp. pycnocephalus	Hordeum murinum ssp. murinum			Suaeda maritima
	Lepidium graminifolium	Hordeum marinum		Tamarix hampeana	Chenopodium bonus-henricus
	Silybum marianum	Cynodon dactylon	0		Suaeda maritima
	Anthemis cotula	Lolium rigidum ssp. rigidum			Salsola soda

The dominant species in each functional group in riparian -1.300 m area

Years	Forbs	Grasses	Legumes	Woody	Halophytes
2015	Plantago coronopus	Hordeum marinum	0	Tamarix hamneana	Salsola kali ssp. kali
	Anthemis cotula	Puccinellia festuciformis			Suaeda splendens
	Crepis setosa	Lolium rigidum ssp. rigidum		Rubus sp.	Suaeda maritima
2016	Anthemis cotula	Lolium rigidum ssp. rigidum		Tamarix hampeana 🕨	Suaeda maritima
	Plantago coronopus	Hordeum marinum	Trifolium repens		Chenopodium polyspermum
	Crepis setosa	Hordeum murinum ssp. murinum		Rubus sp.	Chenopodium bonus-henricus
2017	Plantago coronopus	Hordeum murinum ssp. murinum		Tamarix hampeana 🖡	Suaeda maritima
	Silybum marianum	Cynodon dactylon	Medicago arabica		Salsola soda
	Torilis arvensis	Hordeum marinum		Rubus sp.	Chenopodium bonus-henricus

Conclusions

- The climatic fluctuation through the years affect the species composition of wet meadows and as consequent the available forages for animal feeding.
- Grazing is also influenced species composition and interact with the changes that are caused by climatic conditions.
- Grazing could be a management tool for the control of vegetation changes in order to ensure the ecosystem function.
- The stakeholders, managers, farmers have to understand this....

