

Riparian vegetation: Knowledge conversion for understanding river functioning and status

Francisca Aguiar COST CONVERGES (Action CA16208) Madrid, Spain, 10 July 2018

U LISBOA UNIVERSIDADE DE LISBOA

OUTLINE

- I. RIPARIAN ZONES: Human-disturbed ecosystems
- II. MULTIPLE WAYS for KNOWLEDGE ACHIEVEMENT 15y of case studies in Portugal: Landscape level [Remote sensing tools] & Local Level [Functional diversity approaches]
- III. KNOWLEDGE CONVERSION 10 THOUGHTS

RIPARIAN ZONES- DYNAMIC ECOSYSTEMS

hot-spots of biodiversity, refuge, habitat, visiting, dispersal corridors, linear oasis, shade, leaf litter, woody debris, buffer zone, trophic webs, naturally resilient,...

I. RIPARIAN VEGETATION - HUMAN-DISTURBED ECOSYSTEMS

narrow, fragile, constrained, invaded, fragmented, human-disturbed, low woody species richness, altered recruitment

World Heritage Oporto Wine Region, North Portugal, River Douro

Irrigation crops (SW Portugal), River Sado

CHALLENGE - HELP TO CHANGE THESE VIEWS...

LIVING IN A FRAGMENTED WORLD

Rivers and riparian zones are fragmented....

naturally fragmented ...

... and fragmented by Man.

Are they enough 'Resilient'?

Hagen et al. 2012/Adv Ecol. Res. 43: 89-210.

EU is one of the most fragmented continents in the world. 30% percent of the EU land is moderately to highly fragmented (EU Biodiversity Strategy, 2011).

Credits: Copernicus Land Monitoring service (Satellite imagery © Airbus Defence & Space, 2011, provided under EC/ESA GSC-DA).

"WHAT DO YOU MEAN, 'RESILIENT'?"

'resistance' and 'recovery' are measurable components that together represent resilience

Figure 1. Types of disturbances, the ecological responses they engender, and measurement of resistance (RT), resilience (RL), and net change (NC) within the resistanceresilience framework. Modified from Lake [58]. Urbanization: Wiki commons image, license details https://commons.wikimedia.org/wiki/ File:Chicago_Downtown_Aerial_View.jpg; Wildfire: Wiki commons image, license details https://commons.wikimedia.org/wiki/File:Deerfire_high_res_edit.jpg; Drought: Wiki commons image, license details https://commons.wikimedia.org/wiki/File:Cracked_ground_151.jpg.

Hodgson, McDonald and Hosken 2015/ Trends in Ecology & Evolution 30: 503-506.

IBERIA: Hot-spot of Land Use and Land Cover change of European Riparian Zones

Forestry

• Fire

•Agricultural land abandonment (rural exodus; immigration)

Clerici, Paracchini and Maes, 2014/ Ecohydrology & Hydrobiology 14: 107-120.

II. MULTIPLE WAYS FOR KNOWLEDGE ACHIEVEMENT – 15Y OF CASE STUDIES IN PORTUGAL

•When resources are altered, competitive hierarchies in aquatic and riparian vegetation change, whit shifts in species composition and suites of traits

Conceptual base

TOOLS & DATA

Remote sensing Landscape level GIS Landscape metrics Gains in holistic understanding High resolution imagery **Ecological indicators** Local level (structural, functional, compositional) Field data **Decision support** systems; multi-criteria User/decision level methods, ... Environmental policy, Aguiar, Fernandes & Ferreira. Knowledge and Management Cost-benefits analysis,... of Aquatic Ecosystems 402, 21.

LANDSCAPE LEVEL

CASE STUDY 1

EFFECTS OF LAND USE AND LAND COVER – Tributaries of Tagus River

Fernandes, Aguiar & Ferreira 2011/ Landscape and Urban Planning 99:166-177.

LANDSCAPE METRICS

CATEGORY • Landscape metrics

Number of patches	(NP)

 Weighted Class Area (WCA) NP*MPS/Total area of SU

• Mean Patch Size (MPS)

• Patch Size Coefficient of Variation (PSCov)

SHAPE/ EDGE

AREA/

DENSITY

- Area Weighted Mean Patch Fractal Dimension (AWMPFD)
- Edge Density (ED)

Area, size and structural heterogeneity

Spatial complexity and lateral connectivity

Patch Analyst (vector format) for ArcGIS 10.1

CASE STUDY - LAND USE

IT IS EXPECTED THAT DEGRADATION RESULT IN...

Fernandes, Aguiar & Ferreira 2011/Landscape and Urban Planning 99(2):166-177.

High number of patches

- high Number of Patches
- (or low in extreme cases) NP

Small patches

• Iow Mean Patch Size - MPS

Less complex shapes

- Iow Mean Fractal Dimension Index
 MPFD
- Iow Mean Shape Index MSI

CASE STUDY - LAND USE

IT IS EXPECTED THAT DEGRADATION RESULT IN...

Isolated patches

- high Mean Nearest-Neighbor Distance -MNN
- Low Mean Proximity Index MPI

Homogeneous patches

 low Patch Size Coefficient of Variation - PSCV

Low interspection of patch distribution

• Low interspection and Juxtaposition Index - IJI

ALIEN PLANT INVASIONS

River Aveiras, CWPortugal

EFFECTS OF REGULATION ON SPATIAL STRUCTURE

Aguiar et al. 2016 / Landscape and Urban Planning 153: 83-98.

Blue line represents the talweg

Spatial structure of riparian forests downstream dams

Fronhas: pre-dam

Fronhas: post-dam

Differences post-dam vs. pre-dam ('variable difference')

Total area occupied by riparian woodlands <u>increased</u> (WCA) and riparian patches are <u>larger</u> (MPS) in the postdam period.

TOU – Touvedo FRO – Fronhas VIL – Vilarinho das Furnas

Pre-da	m	Run-of-rivers (RUN)	Reservoir rivers (RES)	Comparison
Fre-uu		Post-	-dam	
Riverbank Tree	2060	Ť	↑	RES>RUN
Riverbank Other	1.7.	ſ	Ļ	RES <run< td=""></run<>
Bank Tree		↑ ns	Ŷ	RES>RUN
Bank Other		1	t	RES>RUN

E Feedback dynamics of riparian vegetation: magnitude and direction of expansion

TRAJECTORIES 24 Landscape metrics can be easily mapped on a GIS platform to visualize critical areas, manage or monitor the success of the restoration/ conservation actions.

LOCAL LEVEL

CASE STUDY 2 RIPARIAN VEGETATION INDEX

Aguiar et al., 2009. Fundamental and Applied Limnology 175:249-267

Aguiar et al. 2009/ Fundamental and Applied Limnology 175:249-267

Riparian Vegetation Index

	Cara matrice		North			South		
			5	3	1	5	3 1	
	Total richness (nº)					≥62	55.5- 62	<55.5
	Proportion of endemic species (%)	≥5.2	3.2-5.2	<3.2	≥1.9	0.1-1.9	<0.1
	Proportion of hygrophytes (%)		≥59.6	0.5-59.6	<0.5	≥41.8	0.5- 41.8	<0.5
	Proportion of acidophyllous sp	ecies (%)	≥12.7	8.7-12.7	<8.7	≥5.7	2.8-5.7	<2.8
	Proportion of perennial species	s(%)	≥84	76.5-84	<76.5			
-^>	Cover of <i>Carex elata</i> subsp. <i>reu</i>	teriana (%)	≥0.7	0.1-0.7	<0.1			
	Proportion of alien species (%)		≤ 4.8	4.8-8	>8	≤ 3.7	3.7-7.9	>7.9
	Cover of alien species (%)		≤ 0.5	0.5-2.8	>2.8	≤ 0.5	0.5-4.8	>4.8
	Proportion of nythrophyllous sp	ecies (%)				≤ 3.9	3.9-6.5	>6.5
	Number of bulbous species (n°)					≤4	4-15.5	>15.5
_	Proportion of ruderals (%)		≤ 8.3	8.3-11.4	>11.4			
7	Weighted woody cover		≥3.3	0.7-3.3	<0.7	≥6.5	0.6-6.5	<0.6
	Cover of <i>Erica arborea+ Frange</i>	ula alnus(%)	≥0.4	0.1-0.4	<0.1			
		High/Good		0.67			0.75	
	Boundaries in Ecological	Good/Moderate		0.50			0.56	
	Quality Ratio values	Moderate/Bad		0.33			0.37	
		Bad/Poor		0.16			0.19	

INTEGRATION

Aguiar et al. 2018./Journal of Applied Ecology. doi: 0.1111/1365-2664.13110

HOME ABOUT CONTACTS

Click the buttons->

<u>bttp://www.isa.ulisboa.</u> <u>pt/proj/flowbase/</u>

16 case studies (hydropower rivers); 20 dams; 52 sampling sites/field surveys; 28 traits

Obligate riparian guild [e.g. Alnus glutinosa, Salix sp., Frangula alnus]

Salix salviifolia

Water stress tolerant [e.g. Rubus ulmifolius, Rosa sp., Ulex minor]

Deciduous competitive [e.g. Fraxinus angustifolia, Quercus sp., Sambucus nigra]

Fraxinus angustifolia

Mediterranean evergreen [e.g. Myrtus communis; Arbutus unedo]

Myrtus communis

Non-riparian evergreen [e.g. Erica cinerea; Cistus psilosepalus; Flueggea tinctoria]

Flueggea tinctoria

Preferential riparian [Betula pubescens spp. celtiberica; Laurus nobilis]

Betula pubescens spp. celtiberica

RIPARIAN GUILDS

Riparian guilds alter their distribution and abundance, but not the frequency of occurrence.

Frequency and duration of high flow pulses and the low-flow conditions were major drivers of change

35

GUILDS & INDICES

Lozanovska, Ferreira & Aguiar (Ecological Indicators submitted; in revision)

Lozanovska, Ferreira & Aguiar (Ecological Indicators submitted; in revision)

Functional diversity index	% studies
Functional Richness (FRic)	25.7
Functional Evenness (FEve)	20.3
Functional Divergence (FDiv)	17.6
Functional Dispersion (FDis)	13.5
Rao (Q)	4.1
Functional Redundancy (FR)	2.7
Extended functional diversity (wFDc)	2.7
Functional Diversity (FD)	1.4
Modified Functional Attributes Diversity (MFAD)	1.4
Community based functional diversity (FDc)	1.4
Community Weighted Means (CWM)	9.5

FRic

FDiv

Lozanovska, Ferreira & Aguiar (submitted; in revision)

CASE STUDY 5

Alder woodlands

Mediterranean shrublands

Tree-heath shrublands

Lozanovska et al. 2018/Aquatic Sciences 80

III. KNOWLEDGE CONVERSION 10 THOUGHTS

THOUGHT 1

WE SHOULD NOT REINVENT THE WHEEL!

Paul A. Keddy

PI AND

Paul A. Keddy

https://vimeo.com/274807365 Dr. Paul Keddy

THOUGHT 2

CHALLENGE – FIND COMMON WAYS TO DIFFERENT VIEWS FOR SUSTAINABLE MANAGEMENT

Average survey responses for management priority and level of scientific information available to manage floodplain lands

Bouska et al. 2016. Ecology and Society 21(3):12.

Examples: carbon sequestration and conservation values; social and conservation values

THOUGHT 3

BE AWARE OF CONTRADICTORY ECOSYSTEM SERVICES

THOUGHT 4

THERE IS NOT A "ONE" SINGLE

SOLUTION

Valley bottom type	Riparian transect length (m)
Headwaters	6
High-energy coupled	10
High-energy open	30
Gorge	20
Canyon	20
Moderate-energy confined	20
Moderate-energy unconfined	50
Glacial trough	40
Low-energy floodplain	70

Monitoring must vary as a function of region, channel form, and management objective.

Field sampling protocol should be different if you are sampling a watertrack flowing through a peatland, an ephemeral stream, or a cottonwood-dominated riparian area.

Woody and herbaceous vegetation

Frequency and cover of each species

Vertical distribution of plants by species

Ground or water cover

Frequency of recruiting woody species

THOUGHT 5

LOOK AT THE DETAILS, INTERPRET WELL

God of the River, Vaticano Museum, Rome, Italy

THOUGHT 4

LOOK AT THE DETAILS, INTERPRET WELL

God of the River Tigris

God of the River Arno, Florence, Italy, Homage to Pope Leo X Medici

RIPARIAN AREA AND 100FT BUFFER -OVERESTIMATION IDAHO, CORRAL CREEK

Courtesy of D.M. Merritt (Webinar, July 2018)

RIPARIAN AREA AND 100FT BUFFER -OVERESTIMATION IDAHO, CORRAL CREEK

RIPARIAN AREA AND 100FT BUFFER -UNDERESTIMATION MONTANA, MEADOW CREEK

RIPARIAN AREA AND 100FT BUFFER — OMISSION ERROR MONTANA, MEADOW CREEK

THOUGHT 6

LINK SCIENCE TO THE REAL WORLD

FROM KNOWLEDGE GAP TO

UNDERSTANDING TO

MANAGEMENT

Vaughan et al. 2009/ Aquatic Conserv.: Marine & Freshwater Ecosystems 19: 113-125

"Scale-dependent effects require concerted management efforts at both the riparian and the (sub-)catchment scale.

Riparian buffer management thus needs to be accompanied by nutrient and erosion control measures at broader scales."

Feld et al. 2018/ Water Research 139: 381-394.

Fig. 1. Conceptual model showing the hypothesised hierarchical relationships between catchment drivers of impact (land-use), catchment pressures, riparian buffer manager instream environmental and biological states. Blue arrows represent assumed negative relationships, red arrows assumed positive relationships and grey arrows assumed un effects, i.e. both positive and negative relationships are possible. (See Supplementary Table S1 for the linkage of arrow numbers and core references.). (For interpretation c references to colour in this figure legend, the reader is referred to the Web version of this article.)

THOUGHT 7

A COMMON SCALE, A COMMON TERMINOLOGY: THERE ARE STILL DIFFICULTIES IN TRANSFER KNOWLEDGE

Structure of the EU 2020 Biodiversity Strategy

2050 VISION

THOUGHT 8

INTEGRATION OF LEGISLATION

CHALLENGE - LEGISLATION

•<u>EU Biodiversity Strategy to 2020</u>, in particular mapping and assessing ecosystems and their services, green infrastructure and restoration;

•Nature Directives (<u>Habitats</u> and <u>Birds</u> Directives) in the framework of

the EU Biodiversity Strategy to 2020;

Management of river basins in line with the <u>Water Framework</u>
<u>Directive</u>;

•Flood protection measures in the <u>Floods Directive</u>;

•New initiative on <u>Maritime Spatial Planning and Integrated Coastal</u> <u>Management</u>.

THOUGHT 9

TAKE THE RISK, CROSS THE SECURITY BARRIER, CROSS THE COMFORT ZONE

Multidisciplinarity: bringing novel science fields into riverine

management (social sciences,..)

THOUGHT 10

KNOWLEDGE AND IMAGINATION

Quote Transmission 001: Einstein and Imagination

"Imagination is more important than knowledge. For knowledge is limited to all we now know and understand, while imagination embraces the entire world, and all there ever will be to know and understand."

- Albert Einstein

THOUGHT

YOUR THOUGHTS!

Any questions?

fraguíar@ísa.ulísboa.pt